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1. Introduction

1.1 Disclaimer
Firstly, it is important to point out that the main interest of this text is to explore the

polarization of electromagnetic waves itself, not focusing necessarily on the properties of
these waves or of the mediums through which the radiation is traveling.

Moreover, linearity will be a central pillar on which we will build all of our analysis.
Having said that, we will be working inside the limits of linear optics, even when it will
not be explicitly written. More than that, we will be considering the conditions for the
existence of the linear maps that we will present through these notes, especially those that
are associated with the so-called Jones matrices.

1.2 Linear medium
As mentioned in 1.1, linearity is an extremely important feature for the developments

presented here. Having said that, let us start with the definition of a linear medium,
considering first the case in which this last one is a dielectric and, then, generalizing it.
Note that it is just a pedagogical choice to justify the physics behind the definition for
the polarization of materials, since we will be more interested in considering the medium
in terms of its polarization than if it is just a dielectric, a metal, or other possible cases.
As a first step, let us explain what a medium is.

Definition 1.1 (Medium and material). A medium is a pair (M,Υ), such that M ∈ R3 is
a non-empty connected subset of R3 and Υ is a set of functions that describe the essential
electromagnetic properties of M . Some renowned elements that usually constitute Υ are the
permittivity tensors, the susceptibility tensors, the permeability tensors, the conductivity
tensors, and the magnetoelectric coupling tensors.
We generally will consider M as a domain, i.e., an open subset, when we need to work
with spatial derivatives, and as a closed set when we integrate some function defined in
M .
Moreover, when of the functions of Υ has a physical origin which explicitly, in a microscopic
way, the macroscopic electromagnetic properties of M , M is usually called a material. In
practice, the terms “medium” and “material” will be used as synonymous in the course of
these notes.



Consider M a finite or possibly infinite dielectric medium with intrinsic electric dipoles
and under the action of an external electric field E⃗(r⃗, t) ∈ R3, where r⃗ ∈ R3 is the position
vector with respect to some arbitrary framework and t > 0 is the temporal parameter.
Suppose that the intensity of E⃗(r⃗, t) is not high enough to break the dielectric strength of
M , i.e., to make it a conductor. By the Lorentz force, these dipoles will tend to align to
the direction of E⃗(r⃗, t) in counterpart to the entropic thermal effects. In addition, some
dipoles may be induced in M due to the separation of charge in the polar constituents of
M .

Then, let us avoid investigating the result of this phenomenon only from a macroscopic
point of view, but, at the same time, let us consider the influence of sufficiently many
dipoles on the general behavior of the system. In other words, we will be working on the
mesoscopic scale.

Definition 1.2 (Mesoscopic scale). A material system is treated on the mesoscopic scale
when its treatment occurs in the overlap of the microscopic and macroscopic scales, allowing
analyses of the system both as interacting particles and as a continuum. Then, a volume
V on this scale is called a mesoscopic scale.

Armed with this notion, assume that the electric field has non-spatial-dependent, i.e.,
E⃗(r⃗, t) = E⃗(t) (assumption that we will address better soon). Then, we can properly
define the polarization of M . Note that we are not talking about the polarization of the
incident wave, but about the effect of the last one on the medium. To deal with this
ambiguous terminology in Physics, for example, Mr. Cloude uses in [5] the linguistic
difference between American and British English to refer to the light polarization writing
“polarisation”, while he evokes the other phenomenon by the spelling “polarization”. Here,
we will not use the last one for both phenomena.

Definition 1.3 (Polarization of a medium). Let V be a mesoscopic volume of M and let
{p⃗i(t)} be the dipole moments inside V for each t > 0. The polarization of M due to an
electric field E⃗(r⃗, t) is

P⃗ (t) =
1

V

∑
i

p⃗i(t).

For a large number of materials, P⃗ (t) is related to the electric field E⃗(t) by

P⃗ (t) = ε0

∫ t

0

χ(t− τ)E⃗(τ) dτ , (1)

where ε0 ∈ R is the vacuum permittivity and χ : [0,+∞) → C is called the 1-susceptibility
tensor of the material (or simply the susceptibility tensor). It is important to point out
that χ could be defined in the whole R. Nevertheless, here, we are considering only causal
mediums, i.e., χ(t) = 0 for t < 0, which means that the medium does not respond to the
applied field before its application. Due to this supposition, the domain of χ was restricted
to the non-negative semiline. This supposition will hold throughout this text for all the
physical quantities, so that all the present mediums will be causal. Additionally, note that
the expression 1 is a convolution

(
χ ∗t E⃗

)
of χ and E⃗ in the time, expressing the fact

that the material can present aspects of memory. The integral, computed coordinate by
coordinate, accumulates the past contributions of E⃗(τ ≤ t) for the polarization, weighting
these by χ(t − τ), which decays with t − τ and makes the contributions of more distant
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moments less significant. An important consideration about integrals that will run through
all of these notes is that we will consider all functions in integrands to be integrable. Just
for completeness, to separate cases like that, with memory, from the others, let us define
what is a medium with instantaneous response.

Definition 1.4 (Medium with instantaneous response). Let M be a medium and consider
a physical response A⃗ : R3 × [0,+∞) → R3 to a field F⃗ : R3 × [0,+∞) → R3, given by

A⃗(r⃗, t) =

∫ t

0

K(r⃗, τ)F⃗ (r⃗, t− τ) dτ ,

where K : R3 × [0,+∞) → K, for K equals to R or C. If

K(r⃗, τ) = K(r)δ(τ),

where δ : [0,+∞) → {0, 1} is the Dirac delta function, we say that M responds instanta-
neously to F⃗ . When it happens,

A⃗(r⃗, t) = K(r⃗)F⃗ (r⃗, t)

and, for each ∆ > 0, A⃗(r⃗, t0) doesn’t influence A(r⃗, t0 + ∆), for all t0 ≥ 0. When M

responds instantaneously to every physical field F (especially the fields E⃗ and H⃗), we say
that M is a perfect medium.

Having made this comment, in order to clarify the linearity in 1, let us consider the
electric field Ê(ω) to be monofrequencial and represented in the frequency domain, and
which is related to E⃗(t) by

E⃗(t) = <
{
Ê(ω)eiωt

}
. (2)

Basically, we are working with Fourier analysis, but it will become clear when we discuss
the harmonic regime. Just to make the notation clearer, the “hat” on the physical quanti-
ties expresses that they are being considered in the frequency domain. Having explained
this consideration, the equation 1 reduces to

P̂ (ω) = ε0χ̂(ω)Ê(ω), (3)

where

χ̂(ω) =

∫ ∞

0

χ(t)e−iωt dt .

Hence, the connection between the displacement electric field D̂(ω), which considers the
effects of inner polarizations, may be given by

D̂(ω) = ε0Ê(ω) + P̂ (ω) = ε0 (1 + χ̂(ω)) Ê(ω), (4)

where is clear the linear dependence of D̂(ω) in Ê(ω), connected by the 1-permittivity
tensor ε̂ : [0,+∞) → C given by ε̂ = 1 + χ̂(ω).

For completeness, it is interesting to say that, due to the almost alignment of the dipole
moments (intrinsic and induced), an electric field majority within the material arises with
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the opposite orientation of E⃗(t), reducing the intensity felt by an arbitrary non-null charge
in M .

On the other hand, when we think about the metals, the analysis is a little more
complex because of the presence of metallic bonds instead of the prevalence of ionic and
covalent bonds. In order to illustrate it, consider M a metallic medium under the incidence
of an electromagnetic wave with electric field Ê(ω), which we represented in the frequency
domain. Unlike the dielectric case, the answer to the field is not limited only to the
subtle displacement of the bound charges and the alignment of the electric dipoles, and
this is because a considerable amount of electrons are not strongly bound to some specific
atomic nucleus. Then, under the influence of Ê(ω), they can collectively move through
M , producing a conduction current Ĵ(ω) usually expressed by

Ĵ(ω) = σ̂(ω)Ê(ω), (5)

where σ̂ : [0,+∞) → C is called the 1-conductivity tensor of the material (or simply
conductive tensor). Even having a resulting conduction current, it is still possible to
consider the linearity

D̂(ω) = ε̂eff (ω)Ê(ω), (6)

where ε̂eff : [0,+∞) → C is the effective permittivity tensor of the material, which
considers ε̂, σ̂ : [0,+∞) → C both the electric permittivity tensor and the conductivity
tensor. In other words, given ε̂ and σ̂, we could define ε̂eff : C2 → C such that we could
write explicitly

D̂(ω) = ε̂eff (ε̂(ω), σ̂(ω)) Ê(ω).

Typically, evoking the boundary conditions for the Maxwell equations, Ê(ω) penetrates
little in M and decays exponentially in a phenomenon called skin depth. In the limit case
of a perfect conductor, D̂(ω), Ê(ω) → 0 in M .

Notice that the hypothesis of a simple linear relation between some physical quantities
was highlighted during this short explanation. We did not deal with magnetic phenomena
itself during these lucubrations, however, let us assume that the magnetizing field Ĥ(ω)
does not depend on r⃗ and is related to the magnetic field B̂(ω) by

B̂(ω) = µ̂(ω)Ĥ(ω), (7)

where µ̂ : [0,+∞) → C is called 1-permeability tensor of the material (or simply perme-
ability tensor). With this last ingredient in hand, we can use 4, 6, 5, 7 to explain what a
linear medium is.

Definition 1.5 (Linear medium). Let M be a medium and consider E and H the spaces
of electric fields and magnetizing fields, respectively, in M . Analogously, let D,J and B
be the spaces of the displacement fields, conduction currents, and magnetic fields, in this
order, in M . Define the constitutive map of M by

ΦM : E ×H → D × J × B(
E⃗, H⃗

)
→
(
D⃗, J⃗ , B⃗

)
,
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which associates the physical fields above in M . Consider the case in which this map is
linear, i.e.,1

Φ
(
Λ1E⃗1 + Λ2E⃗2,Λ1H⃗1 + Λ2H⃗2

)
= Λ1Φ

(
E⃗1, H⃗1

)
+ Λ2Φ

(
E⃗2, H⃗2

)
for all E⃗1, E⃗2 ∈ E , H⃗1, H⃗2 ∈ H,Λ1,Λ2 ∈ Mat3×3(K), for K being R or C.2 When it
happens, we say that M is a linear medium.

Observe that what we are just saying is that, given two electric fields Ê1, Ê2 and
Λ1,Λ2 ∈ Mat3×3(K), we are able to use the superposition principle and write

D⃗ = ε
(
Λ1E⃗1

)
+ ε

(
Λ2E⃗2

)
= Λ1D⃗1 + Λ2D⃗2,

where ε is the already presented permittivity tensor of the material and D⃗i := εE⃗i, for
i = 1, 2. We can apply the same idea for J⃗ and B⃗. This superposition principle has, as a
consequence, that if these fields are a composition of fields with different frequencies, then
each one evolves independently and one frequency is not coupled to another.

Additionally, the subtlety of the definition 1.5 is in the fact that, in realistic problems,
the physical fields are connected by the Maxwell equations and constrained by the bound-
ary conditions which emerge from these equations. Then, if we consider only Maxwell
physical solutions, the spaces of all possible fields may not have a structure similar to a
vector space and the superposition principle might not work anymore. Nonetheless, for
linear materials, it is always true and the spaces E , H, D,J and B present a natural
structure very similar to that of a vector space.3

That being said, we can analyze some possible origins for the non-linearity of a medium
and its consequences. For some materials under certain conditions, their polarization due
to an electric field E⃗(t) depends on this field and its powers. Then, in a more general way,
we can write P⃗ (t) as a power series of E⃗(t), such that the coefficients are generalizations
of the 1-permittivity tensor. Observe that the nomenclature for ε carries the terminology
“tensor” and it is because it is a covariant tensor. Basically, given a finite vector space V
of dimension n, for k ∈ Z≥0, a (k, 1)-tensor ζ on V is a multilinear map of the format

ζ : V ∗ × V × · · · × V︸ ︷︷ ︸
k repetitions

→ R.

When the first entrance does not exist, i.e., when ζ is defined only in a product of spaces
V , we say that ζ is a covariant tensor of order k.

Furthermore, when we have a (k1, 1)-tensor ζ1 and a (k2, 1)-tensor ζ2, we can define a
(k1 + k2, 2)-tensor given by

ζ1 ⊗ ζ2
(
α1, α2, v1, . . . , vk1+k2

)
= ζ1

(
α1, v1, . . . , vk1

)
ζ2
(
α2, vk1+1, . . . , vk1+k2

)
,

1. To make the notation cleaner, let us not write explicitly the space-temporal dependence of the vector
fields in this definiton.

2. Formally, we define the product space V := E × H and consider the linearity of Φ for all linear combi-
nations of elements (E⃗, H⃗) of V, where the coefficients of this combination are within Mat3×3(K).

3. A vector space is defined over a field in the sense of algebra. The space of matrices Mat3×3(K), with
its canonical operations, is not a field, since singular elements do not have an inverse, but forms a ring.
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for all α1, α2 ∈ V ∗, vi ∈ V, i = 1, . . . , (k1+ k2). Note that the second entrance of the pair
(k, l) in the definition spelling of a (k, l)-tensor represents the number of dual spaces V ∗

in the product of the domain of the tensor. Consequently, we could present the definition
of (k, l)-tensor, for l arbitrary, instead of taking k equal to 1 or 2. In fact, it is true,
but it would introduce a denser notation than necessary, since the permittivity ε is just a
(k, 1)-tensor.4

Thus, consider {bi : i = 1, . . . , n} a basis for V , of which the dual basis is given by{
b̂j ∈ V ∗ : b̂j(bi) = δji ∀ i, j = 1, . . . , n

}
.

Consequently, we can describe ζ using these bases as

ζ =

n∑
j,i1,...,ik

ζ
(
b̂j , bi1 , . . . , bik

)
bj ⊗ b̂i1 ⊗ · · · ⊗ b̂ik ,

where the tensor product of elements of {bi} and
{
b̂j
}

is an induced basis in the space of
the (k, 1)-tensor on V .

A well-known result from the tensor calculus guarantees that there is a basis-independent
isomorphism between the vector space of the multilinear maps

V × · · · × V︸ ︷︷ ︸
k repetitions

→ V

and the space of all (k, 1)-tensors on V . So, when k = 1, the space of these tensors is
isomorphic to the space End(V ) of endomorphisms of V , i.e., linear maps from V to V .
Based on that, we can observe that both ε(t) and σ(t), for each t ≥ 0, are (1, 1)-tensors,
since they receive a vector E⃗(t) written in a basis and return another vector P⃗ (t), up to
a scale factor. In addition, note that E⃗(t), for any fixed time t, or more generally for any
element v of a vector space V , is itself a (0, 1)-tensor on V ∗ and it is due to the natural
isomorphism between V and (V ∗)∗, so that v(α) := α(v), ∀ α ∈ V ∗.

Besides that, given an arbitrary (k + 1, l + 1)-tensor ζ, written in terms of a basis as

ζ =

n∑
j1,...,jl+1

i1,...,ik+1

ζ
(
b̂j1 , . . . , b̂jl+1 , bi1 , . . . , bik+1

, bik+1

)
bj1 ⊗ · · · ⊗ bjl+1

⊗ b̂i1 ⊗ · · · ⊗ b̂ik+1 ,

define

ζ
j1,...,jl+1

i1,...,ik+1
:= ζ

(
b̂j1 , . . . , b̂jl+1 , bi1 , . . . , bik+1

)
.

Then, we define the contraction of ζ in (im, jm) in terms of basis as

ζj1,...,jli1,...,il
:=

n∑
im=1

ζj1,...,im,...,jl
i1,...,im,...,il

,

4. To address the tensor theory in a more general way, see [6].
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for 1 ≤ m ≤ min{k, l}. Note that it looks to be dependent on the basis, but it is a false
impression. To see it, remember that the space of the (1, 1)-tensors on V is canonically
isomorphic to End(V ). Thus, fixing all the entrances of ζ, except the mth covariant and
contravariant, we have the endomorphism

ζ(α1, . . . , •, αm+1, . . . , αl, x1, . . . , •, vm+1, . . . , vk) ∈ End(V ).

As an endomorphism is invariant by changing the basis, the contraction is well-defined.
For the sake of notation, when ζ is a (k + 1, 1)-tensor and a sequence of contractions is
applied to generate a (1, 0)-tensor, i.e., a vector, we use the notation ζ : (v1, · · · , vn+1) ∈ V .
Explicitly, we can write

ζ : (v1, · · · , vn+1) :=

n∑
j=1

ζj2,...,jk+1vj2 . . . vjk+1
.

Despite that, returning to the supposition that P̂ (ω) does not depend linearly on Ê(ω),
we can write 3 in a more general way, using the tensor language, as

P̂ (ω) = P̂0 + ε0
∑
k∈N

χ̂(k)(ω) :

(⊗
k

Ê(ω)

)
,

⊗
k

Ê(ω) := Ê(ω)⊗ · · · ⊗ Ê(ω)︸ ︷︷ ︸
k repetitions

, (8)

where P̂0 ∈ R3, and where χ̂(k)(ω) is a (k, 1)-covariant tensor, called the k-susceptibility
tensor. As the second coordinate of (k, 1) is fixed, let us say that χ̂(k)(ω) is a k-covariant
tensor (although it is, in fact, what we call a mixed tensor). When the material has no
intrinsic polarization, P̂0 = 0, being this condition that we will suppose in these notes.
Usually, only the first values of k effectively influence the physics observed. For this reason,
let us make explicit the first terms of 9:

χ̂(1)(ω) :
(
Ê(ω)

)
=

3∑
j=1

χ̂
(1)
ij (ω)Êj(ω),

χ̂(2)(ω) :
(
Ê(ω)⊗ Ê(ω)

)
=

3∑
j,k=1

χ̂
(2)
ijk(ω)Êj(ω)Êk(ω),

χ̂(3)(t) :
(
Ê(ω)⊗ Ê(ω)⊗ Ê(ω)

)
=

3∑
j,k,l=1

χ̂
(3)
ijkl(ω)Êj(ω)Êk(ω)Êl(ω).

Notice that P⃗ (t) is still a vector, since we are considering contractions in 9, and the
temporal-dependent can be explicitly reflected by the convolution

(
χ ∗t E⃗

)
, as

P⃗ (ω) = P⃗0 + ε0
∑
k∈N

χ(k) ∗t

(⊗
k

E⃗

)
, (9)

where
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χ(k) ∗t

(⊗
k

E⃗

)
:=

∫ t

0

· · ·
∫ t

0

χ(k) (t− τ1, . . . , t− τk) :
(
E⃗ (τ1)⊗ · · · ⊗ E⃗ (τk)

)
dτ1 . . . dτk .

Observe that we can generalize the definition 1.4 written χ(k) in terms of a Dirac delta
function. In addition, note that we are considering the case of a field monofrequential,
i.e., with a unique ω. However, sometimes E⃗(t) is a superposition of n ∈ N electric fields
with different frequencies, so that we can write

E⃗(t) =

n∑
k=1

Ê(ωk)e
iωnt + Ê∗(ωk)e

−iωnt

2
.

Consequently, when the exponential terms of E⃗(t) are multiplied by each other, new
components of frequency appear in the polarization, whose frequencies are the sum of the
difference of the original ones. For instance, consider the terms eiωjt and e±iωkt. Then,
the product eiωjt e±iωkt = ei(ωj±ωk)t produces a new term with frequency ωj ± ωk, which
characterizes the phenomena of sum- or difference-frequency generation. But it is not the
only combination of frequencies; there may be mixtures of waves generating combinations
of three or more frequencies and, due to this, these compositions must be considered in 9,
thus producing the expression

P̂ (ω) = ε0P̂0(ω) + ε0
∑
k∈N

∑
p∈Sk

χ̂(k)
(
ωp(1), ωp(2), . . . , ωp(k)

)
:
(
Ê
(
ωp(1)

)
⊗ · · · ⊗ Ê

(
ωp(k)

))
,

where Sk := {p : {1, 2, . . . , k} → {1, 2, . . . , k}} is the space of permutations of k elements.
Since it was explained, by 9, it is possible to see that the dependence of the polarization

in the product ⊗kE⃗(t) removes the linearity that connects D⃗(t) and E⃗(t) in 6 for k > 1.
Then, when the intensity of E⃗(t) is strong enough to make the terms of order larger than
one important in the polarization, the medium will respond non-linearly and the physical
treatment of this system material-light falls within the scope of non-linear optics.

A famous example of a non-linear phenomenon in optics due to high-intensity incident
light is the Kerr effect, which may be described briefly as the change of the refractive
index of a material due to the presence of the intense electric field of this light. In order
to understand it better, consider an electric field E⃗(t) in a medium M and suppose that
it can be written as

E⃗(t) =
Ê(ω)eiωt + Ê(ω)∗e−iωt

2
,

for ω ∈ [0,+∞) and where the vector notation was suppressed in Ê, what we will do for
the writing of the complex amplitude of fields throughout this text. Consider an arbitrary
Cartesian framework. As there is no spatial dependence of E⃗(t), the system formed by
E⃗(t) and M has inversion symmetry, i.e., the change r⃗ → −r⃗ in the position vector does
not change either E⃗(t), nor the field D⃗(t). When the system has this kind of symmetry,
χ(2k) = 0, k ∈ N. It expresses the fact that the Kerr effect is a third-order effect on the
electric field, while the permanence of only χ(1) and χ(2) determines what we call electro-
optics Pockels effect. With that in mind, we can split P⃗ (t) into the linear P⃗L(t) and
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non-linear P⃗NL(t) parts: P⃗ (t) = P⃗L(t) + P⃗NL(t). In the high-intensity regime, the linear
contributions are still present, but they are usually dominated by the non-linear term. For
this reason, it is common in this scenario to refer to polarization as the non-linear part
PNL(t) of P⃗ (t), a convention that we’ll adopt here.

Having said that, in the context of the Kerr effect, the non-linear polarization is sensi-
tive to interactions of electric fields oscillating at different frequencies. Note that all possi-
ble interactions between three electric fields with different frequencies, say
ω1, ω2, ω3 ∈ [0,+∞), which can contribute to a polarization in a new frequency ω4, may
be expressed by the constraint

ω4 = ω1 + ω2 + ω3. (10)

Consequently, assuming that P⃗ (t) follows the same format as E⃗(t), i.e.,

P⃗ (t) =
P̂ (ω)eiωt + P̂ (ω)∗e−iωt

2
,

by 9, considering multiple frequencies connected by the 10, we have that the ith coordinate
of P̂ (ω4) is given by

P̂i (ω4) =
1

4
ε0
∑
p∈S3

3∑
jkl=1

χ
(3)
ijkl

(
ωp(1), ωp(2), ωp(3)

)
Êj

(
ωp(1)

)
Êk

(
ωp(2)

)
Êl

(
ωp(3)

)
. (11)

Hence, when 10 is ω = 0 + 0 + ω, we obtain the so-called electro-optical Kerr effect,
sometimes referred to as the DC Kerr effect, where two static fields and one oscillating
interact in M resulting in a polarization at ω. To illustrate it, consider that we have only
one strong static electric field, say along the direction y, and the other one can be taken as
null. The presence of this intense field produces a difference between the refractive index
n⊥(ω) and n�(ω) measured along the direction y and x, respectively. Let us analyze how
it is possible.

For some mediums5 M , it is possible to reduce the tensorial expression 9 to a simple
scalar equation

P̂ (ω) = ε0χeff (ω)Ê(ω) +O
(∥∥∥Ê(ω)

∥∥∥4) , χeff (ω) := χ(1)(ω) + 3χ(3)(ω)
∥∥∥Ê(ω)

∥∥∥2 ,
or, conveniently,

P̂ (ω) = ε0

[
χ(1)(ω) +

3

4
χ(3)(ω)Ê(ω) · Ê(ω)

]
Ê(ω) cos(ωt) + ε0

1

4
χ(3)(ω)Ê(ω) cos(3ωt).

(12)
Besides that, the refractive index of several materials obeys the relations{

n(ω) = n0(ω) + n2(ω)〈E†(ω) · E(ω)〉,
n(ω)2 = 1 + χeff (ω),

5. Here, we will considering the hypothesis of isotropy and homogeneity for the medium, which will be
defined soon.
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where 〈 · 〉 is the temporal average, n0 is the refractive index in the presence of negligible
fields,6 n2(ω) introduces the dependence between n and the intensity of the applied field.
Then, a physical solution for this system of equations is

n0(ω) =
√
1 + χ(1)(ω), n2 =

3χ(3)(ω)

4n0(ω)
.

Observe that, when χ(3)(ω) ≈ 0, n2(ω) ≈ 0 and the index n(ω) reduces to n0(ω).
Applying this process for each direction, we obtain n⊥(ω) and n�(ω) from the expressions
for each coordinate of the polarization, i.e., from7

P̂1(ω) = 3ε0χ
(3)
1221 (0, 0, ω)E

2
2(0)Êx(ω),

P̂2(ω) = 3ε0χ
(3)
2222 (0, 0, ω)E

2
2(0)Ê2(ω).

After that, let us consider the case ω1 = ω2 − ω2 + ω1, which concerns the so-called
optical Kerr effect, also known as the AC Kerr effect. In this phenomenon, a wave of
frequency ω2 changes the refractive index of the medium to another wave of frequency
ω2, since the intensity of the first one is sufficiently greater than that of the second one.
So, if we follow the steps presented for the electro-optical Kerr effect, we will observe that
n2(ω1, ω2) will be a function of ω1 and ω2 due to a process called cross-phase modula-
tion. As n2(ω1, ω2) will not be identically null, we can observe the change in the index
experienced by the wave of frequency ω1.

Accordingly, this is the main idea behind the Kerr effect.8 Although the physical
consequences of nonlinearity in the Kerr effect seem to be limited to changing the refractive
index, let us observe carefully 12 and separate the expression into two terms:

Pω := ε0

[
χ(1)(ω) + 3

4χ
(3)(ω)Ê(ω) · Ê(ω)

]
Ê(ω) cos(ωt),

P3ω := ε0
4 χ

(3)(ω)Ê(ω) cos(3ωt).
The term P3ω is related to a process called third-harmonic generation, where three photons
of frequency ω are annihilated to generate another photon with frequency 3ω. This kind
of phenomenon is generalized for n photons, although often it is more difficult to generate
a n-th harmonic as n increases. Consequently, the second harmonic is the first non-linear
expression of this phenomenon. Notice that, when Ê(ω) · Ê(ω) is proportional to cos2(ωt),
by the trigonometric identity

cos2(ωt) = 1 + cos(2ωt)
2

,

the medium answers to this field by emitting light with double frequency 2ω, making red
light become blue, for instance.

Therefore, we can observe that, for high intensity, the limits of linearity may be broken.
To clarify it, we used the linear relation expressed in 6, however, we could also use 5 and
6. Note that it depends on ω ∈ [0,+∞), even representing the refractive index in the absence of strong

fields. It is because the realistic refractive indexes usually consider dependences of ε and µ on the
frequency. In the literature, n0 is called the linear refractive index.

7. As we will see in 1.5, which means that, in the presence of an intense electric field, this material expresses
properties of birefringence.

8. It is a topic widely explored in the literature, where we can find, for example, texts which consider
magnetic effects in the Kerr effect. For more information, see [8].
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7. It is worth mentioning that there are other origins for the breaking of the linearity of
the medium.

1.3 Harmonic regime
After exploring the notion of linear mediums, let us explain better the comment that

was made when we wrote 2. There, we supposed that we were working in the harmonic
regime, which consists, basically, of a regime in which the fields oscillate as sinusoids with
fixed frequency ω ∈ [0,+∞). Let us define it properly.

Definition 1.6 (Harmonic regime). Let M ∈ R3 be a medium that constitutes an electro-
magnetic system. Consider

F⃗ (r⃗, t) ∈
{
E⃗(r⃗, t), D⃗(r⃗, t), B⃗(r⃗, t), H⃗(r⃗, t), J⃗(r⃗, t)

}
.

We say that this system is in the harmonic regime if F⃗ (r⃗, t) can be written in the format

F⃗ (r⃗, t) = <
{
F̂ (r⃗, ω)eiωt

}
,

for some F̂ : R3 × {ω} → C, for ω ∈ [0,+∞). The notation F̂ (r⃗, ω) specifies which
frequency is fixed.9

Even though the term harmonic is sometimes associated with the harmonic functions,
i.e., eigenfunctions of the Laplace-Beltrami operator,10 here, this adjective expresses the
fact that we are using sinusoidal oscillating solutions for the fields. As sine and cosine
express the solution for harmonic oscillator type equations, the terminology “harmonic”
is inherited by the regime described in 1.6.

Pointing this out, the implementation of the harmonic regime usually reduces the com-
plexity of the analysis and computations in electromagnetism. Given that the Maxwell
equations involve the temporal derivative of the electric and magnetizing fields, in this
regime, differential equations which consider terms as ∂

∂t E⃗(r⃗, t), for instance, can be writ-
ten in a simpler way by the relation

∂

∂t
E⃗(r⃗, t) = <

{
iωÊ(r⃗, ω) eiωt

}
,

what is, sometimes, expressed by saying that the operator ∂
∂t is replaced by iω.

In addition, the harmonic regime appears naturally in the modeling of stationary states
of systems that work oscillating with a fixed frequency. In other words, it is important to
study long-term oscillatory phenomena, after the transient may be disregarded. Addition-
ally, the separation between a spatial term F̂ (r⃗, ω) and a temporal exponential eiωt leads
to an easier application of the method of separation of variables to solve partial differential
equations concerning F⃗ (r⃗, t).

9. Sometimes, in the literature, the notation F̂ (r⃗) is used instead of F̂ (r⃗, ω) to explicitate that the regime
is monofrequencial. Here, we chose to use the last one to make the frequency explicit when considering
the superposition of different electromagnetic waves such that each one is monofrequencial.

10. For instance, it’s common, in Physics, the use of the spherical harmonics, which are the eigenfunctions
of the Laplace-Beltrami operation on the sphere S2.
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Finally, it is worth mentioning that, for linear mediums, if F⃗ involves more than one
frequency, we can use the superposition principle and the Fourier transform to analyze
each component with a different frequency as independent and subjected to the harmonic
regime. In order to exemplify it, consider ω ∈ [a, b] ⊂ [0,+∞) is not fixed. Then, by
linearity, we can write

F⃗ (r⃗, t) = <

{
1

2π

∫ b

a

F̂ (r⃗, ω)eiωt dω
}
, (13)

where F̂ (r⃗, ω)eiωt for each ω ∈ [a, b] contributes individually to the final field F⃗ (r⃗, t).
Similarly, in the case where the frequency spectrum is discrete and has cardinality n, we
can rewrite 13 as

F⃗ (r⃗, t) = <

{
n∑

k=1

F̂ (r⃗, ωk)e
iωkt

}
.

1.4 Homogeneous and isotropic medium
Having presented the concepts of harmonic regime and linear medium, let us briefly

explore the notion of homogeneity. For that, consider M ⊂ R3 a medium. Consider also
the functions α :M → Σ and β : [0,+∞) → Σ, which provide the constitutive parame-
ters of M , i.e., Σ is the space of all non-null permittivity tensors, conductivity tensors,
and magnetic permeability tensors. While α expresses the spatial dependence of these
parameters, β considers their dependence on the time. For M linear,

Im(α) ⊆ Mat3×3

(
F+

K

)
× Mat3×3

(
F+

K

)
× Mat3×3

(
F+

K

)
Im(β) ⊆ Mat3×3

(
FK

(
K3
))

× Mat3×3

(
FK

(
K3
))

× Mat3×3

(
FK

(
K3
))

where K ∈ {R,C}, and F+
K and FK

(
K3
)

are the spaces of functions from [0,+∞) and
from K3, respectively, to K. The choice between K = R or K = C depends on whether the
analysis considers real or complex fields, for example. A well-formulated description for
a homogeneous medium may be done by the use of the group theory language and, by a
better understanding of this text, let us present the idea of a group structure in algebra.

Definition 1.7 (Group). Let G be a set endowed with an operation
◦ : G×G→ G. (G, ◦) is called a group if it has the following properties.

1. Associativity: (g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3), ∀ g1, g2, g3 ∈ G;

2. Existence of neutral element: ∃ e ∈ G such that e ◦ g = g = g ◦ e, ∀ g ∈ G;

3. Existence of inverse elemente: ∀ g ∈ G, ∃ g−1 ∈ G such that g ◦ g−1 = e = g−1 ◦ g.

When, besides these properties, the binary operation ◦ is commutative, i.e. if,
g1 ◦ g2 = g2 ◦ g1, ∀ g1, g2 ∈ G, we say (G, ◦) is an abelian group.
Moreover, let M be another set. The (left-) action of G on M is a function

ψ : G×M →M, (g, x) 7→ ψ(g, x),

such that
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1. ψ(e ◦ x) = x, ∀ x ∈M ;

2. ψ (g1, ψ (g2, x)) = ψ (g1 ◦ g2, x) , ∀ g1, g2 ∈ G, ∀ x ∈M .

Usually, we just simplify the notation writing ψ(g, x) as g ◦ x. Besides that, when the
action is implied, we say that G acts on M .

Group theory is a widely used area in Physics, from areas such as crystallography11 to
relativity, for instance.12 For now, let us just illustrate it by two specific groups, where
one is abelian, while the other one is not. Consider a finite K-vector space (V,+), for K is
an arbitrary field. Then, V acts on itself by

x⃗+ y⃗ ∈ V, ∀ x⃗, y⃗ ∈ V.

This group is called the translation group of V . A special case of this last one is (Rn,+),
n ∈ N, with the canonical sum operation, where we write

x⃗+ y⃗ = (x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn) ∈ Rn,

for all x⃗, y⃗ ∈ Rn. It is easy to see that this group is abelian, different from the next one
that we will present.

Let K be a field and consider GL(n,K) the set of all invertible matrices n × n with
entries in K. Endowed with the matrix product ·, (GL(n,K), · ), it is a group, called the
general linear group on K. Then, consider the subset

O(n,K) :=
{
M ∈ GL(n,K) :M ·MT = 1 =MT ·M

}
⊂ GL(n,K),

where 1 is the identity of the linear group, which coincides with the n×n identity matrix.13

Making O(n,K) inherit the group operation from GL(n,K), it becomes a subgroup of this
last one, i.e., a subset of GL(n,K) that is closed under the group operation. Let us define
another subgroup, but now of O(n,K). Define

SO(n,K) := {M ∈ O(n,K) : detM = 1} ⊂ O(n,K).

Then, (SO(n,K), · ) is also a group, named the special orthogonal group. Given a finite
K-vector space V of dimension n, SO(n,K) acts on V by

R · x⃗ = Rx⃗RT

as a rotation.14 For V = R2, this group is abelian and the order of the rotations doesn’t
change the final vector, however, it is not what usually happens.

Thus, having presented the notion of groups, we can express what a homogeneous
medium is.

11. For an introduction to the application of group theory into topological crystallography, see this material
[10]. If you want to have a more complete introduction to group theory, see [2].

12. The set S3 of permutations which was used in 11, with the operation ◦ of function composition, has
a group structure and (S3, ◦) is called the symmetric group of order 3. It is an important example of
group, since it is the smaller non-abelian group, i.e., there is no non-abelian group with fewer elements
than S3.

13. It is not difficult to prove that the identity of a group is unique.
14. To see that, just consider a K-inner product in V and show that (SO(n,K), · ) preserves it and the

orientation of the space.
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Definition 1.8 (Homogeneous medium and time-invariant medium). Let (G, ◦) be a group
that acts on M , where ◦ is the group operation. If, for all g ∈ G such that g ◦M = M ,
we have

α(g ◦ x) = α(x), ∀ x ∈M,

we say that M is G-homogeneous. Furthermore, when G is the translation group of Rn,
M is simply called homogeneous. Similarly, if G is the translation group of [0,+∞), if,
for all g ∈ G such that g ◦ [0,+∞) = [0,+∞), holds

β(g ◦ t) = β(t), ∀ t ∈ [0,+∞),

we say that M is time-invariant.

Essentially, for homogeneous mediums, ε(i)(r⃗, t) = ε(i)(t) and σ(i)(r⃗, t) = σ(i)(t),
∀ r⃗ ∈ R3, ∀ i ∈ N or, less generally, for the relevant values of i ∈ N.15 Analogously,
for time-invariant mediums, ε(i)(r⃗, t) = ε(i)(r⃗) and σ(i)(r⃗, t) = σ(i)(r⃗), ∀ t ∈ [0,+∞),
∀ i ∈ N.

Intuitively, for a homogeneous medium, there is no spatial variation of the parameters
that describe the electromagnetism in it, so that, roughly speaking, the last one “looks”
the same at each of its points (in terms of physical measurements).

Furthermore, since homogeneity is a property of invariance under translations, it is
reasonable to wonder about invariances by rotations. The reason for this reasonableness
lies in the fact that all the isometries of Rn that preserve orientation, i.e., all the endo-
morphisms that preserve the canonical Euclidean product

(x1, . . . , xn)︸ ︷︷ ︸
:=x

· (y1, . . . , yn)︸ ︷︷ ︸
:=y

= x1y1 + · · ·+ xnyn, ∀ x, y ∈ Rn,

and the orientation of the space, are translations or rotations. Guided by this principle,
by observation of the equations 6 and 7, we can notice that ε0 or, more generally, ε, and
µ are considered functions with the image set being fields. For simplicity, let us refer to
them as scalars, since, for each element from the domain, they are scalars. A consequence
of this fact is that they do not codify directional dependencies and all directions have the
same value of ε and µ. To make possible this dependence, let us define these physical
quantities as follows.

Definition 1.9 (Constitutive parameters). Let M be a linear, causal and non-permanently
polarized medium in harmonic regime. Let E⃗(r⃗, t), D⃗(r⃗, t) ∈ R3 be an electric field and
the displacement electric field, respectively, in M . The electric permittivity of M (or
1-permittivity tensor) is the function

ε : R3 × [0,+∞) → End(R3)

such that, for each t > 0, ε(t) is the (1, 1)-tensor such that

D⃗(r⃗, t) =

∫ t

0

ε(r⃗, t− τ)E⃗(r⃗, τ) dτ .

15. The choice to present the definition of a homogeneous space, even after having used this notion earlier,
is due to the fact that the discussion on linearity introduced the constitutive parameters gradually and
followed the most common approaches found in the standard electromagnetism textbooks.
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In terms of components in the frequency domain,

D̂i(r⃗, ω) =

3∑
j=1

ε̂ij(r⃗, ω)Ej(r⃗, ω).

Analogously, let B⃗(r⃗, t), H⃗(r⃗, t) ∈ R3 be a magnetic field and the magnetizing field, in this
order, in M . The magnetic permeability of M (or 1-permeability tensor) is the function

µ : R3 × [0,+∞) → End(R3)

such that, for each t > 0, µ(t) is the (1, 1)-tensor such that

B⃗(r⃗, t) =

∫ t

0

µ(r⃗, t− τ)H⃗(r⃗, τ) dτ .

Expressing this relation in components in the frequency domain, we obtain

B̂i(r⃗, ω) =

3∑
j=1

µ̂ij(r⃗, ω)Hj(r⃗, ω).

Following the same principles, let E⃗(r⃗, t), J⃗(r⃗, t) ∈ R3 be an electric field and the conduc-
tion current field, respectively, in M . The conductive of M (or 1-conductive tensor) is the
function

σ : R3 × [0,+∞) → End(R3)

such that, for each t > 0, ε(t) is the (1, 1)-tensor such that

J⃗(r⃗, t) =

∫ t

0

σ(r⃗, t− τ)E⃗(r⃗, τ) dτ .

In the frequency domain, component by component, we can express it as

Ĵi(r⃗, ω) =

3∑
j=1

σ̂ij(r⃗, ω)Ej(r⃗, ω).

Based on this definition, we can define the isotropy of a medium.

Definition 1.10 (Isotropic medium). Let M be a linear medium. M is pure isotropic (or
simply isotropic16) if, for all orthonormal bases,

ε̂(r⃗, ω) = Λ(r⃗, ω).1, µ̂(r⃗, ω) = N(r⃗, ω).1, σ̂(r⃗, ω) = S(r⃗, ω).1,

for some Λ, N, S : R3 × [0,+∞) → C. When a medium is not isotropic, we say that it is
anisotropic.

16. The term “pure” appears to distinguish it from the linear chiral mediums, also called bi-isotropic, which
have coupling between the fields E⃗ and H⃗. In these cases, there are ε, η, γ, µ : R3 × [0,+∞) → End(R3)
such that

D̂(r⃗, ω) = ε̂Ê(r⃗, ω) + η̂Ĥ(r⃗, ω), B̂(r⃗, ω) = µ̂Ĥ(r⃗, ω) + γ̂Ê(r⃗, ω).
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Note that this definition hides behind it an invariance already commented on: the
invariance by rotations. According to the examples of groups presented before, SO(n,R)
or, more restrictly, SO(3,R), corresponds to the group of rotations. Then, another char-
acterization for isotropic mediums is obtained by the use of this group.

Proposition 1.1. Let M be a linear medium with electric permittivity ε̂(r⃗, ω) and mag-
netic permeability µ̂(r⃗, ω). In order to make the notation cleaner, write ε̂ = ε̂(r⃗, ω) and
µ̂ = µ̂(r⃗, ω). Then,

ε̂ = Λ(r⃗, ω).1, µ̂ = N(r⃗, ω).1, σ̂ = S(r⃗, ω).1,

for some Λ, N, S : R3 × [0,+∞) → C if, and only if,

R.ε̂ = Rε̂RT = ε̂, R.µ̂ = Rµ̂RT = µ̂, R.σ̂ = Rσ̂RT = σ̂, ∀ R ∈ SO(3,R).

Proof. On one hand, consider ε̂ = Λ.1, for some Λ : R3 × [0,+∞) → C. Then,

Rε̂ = Rε̂RT = R(Λ.1)RT = Λ
(
RRT

)
= Λ.1 = ε̂

for all R ∈ SO(3,R).
On the other hand, suppose that R.ε̂ = ε̂ for all R ∈ SO(3,R), especially for a rotation
by θ ∈ [0, 2π) around the axis z, given by

Rz(θ) =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1


Observe that, in fact, Rz(θ) ∈ SO(3,R), since detRz(θ) = cos2 θ + sin2 θ = 1. Moreover,
write

ε̂ =

ε̂11 ε̂12 ε̂13
ε̂21 ε̂22 ε̂23
ε̂31 ε̂32 ε̂33

 .

Then, we can express Rz(θ)ε̂Rz(θ)
T = ε̂ explicitly as

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

ε̂11 ε̂12 ε̂13
ε̂21 ε̂22 ε̂23
ε̂31 ε̂32 ε̂33

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 =

ε̂11 ε̂12 ε̂13
ε̂21 ε̂22 ε̂23
ε̂31 ε̂32 ε̂33


Computing the product of matrices above and comparing the right and the left sizes of
this equation, we obtain 

ε̂12 = ε̂21 = 0,

ε̂13 = ε̂31 = 0,

ε̂23 = ε̂32 = 0,

ε̂11 = ε̂22.

As a consequence of it, ε̂ is reduced to
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ε̂ =

ε̂11 0 0
0 ε̂11 0
0 0 ε̂33


Similarly, consider the rotation by ϕ ∈ [0, 2π) around the axis x, given by

Rx(ϕ) =

1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ


Then, Rx(ϕ)ε̂Rx(ϕ)

T = ε̂ can be written explicitly asε̂33 0 0
0 ε̂11 0
0 0 ε̂11

 =

ε̂11 0 0
0 ε̂11 0
0 0 ε̂33


Consequently, ε̂11 = ε̂33 =: Λ, where Λ : R3 × [0,+∞) → C, and, therefore, ε̂ = Λ.1.
The demonstrations for µ and for σ follow analogously to this one.

Notice that, due to this proposition, the definition 1.1 could be formulated without
explicitly stating that, for an isotropic medium, the electric permittivity and the magnetic
permeability are proportional to the identity in all possible orthonormal bases for R3. If
there exists one such that it happens, we can just apply a sequence of rigid movements
of rotation on this basis to produce all the other ones and it will not change the matrix
representation of ε̂(r⃗, ω), µ̂(r⃗, ω) and σ̂(r⃗, ω).

Summarily, while a homogeneous medium presents the same electromagnetic behavior
independent of the point where we are analyzing within, what is usually described in the
literature as “it looks the same for each one of its points”, in an isotropic medium, the
electromagnetic description does not depend on the direction of analysis, a property that
is customarily synthesized in the expression “the medium looks the same in all directions”.

Evidently, for a homogeneous and isotropic medium, it is valid ε̂(r⃗, ω) = ε̂(ω).1,
µ̂(r⃗, ω) = µ̂(ω).1 and σ̂(r⃗, ω) = σ̂(ω).1, where the abuse of notation for
ε̂, µ̂, σ̂ : [0,+∞) → C expresses the fact that we can consider the electric permittivity, the
magnetic permeability and the conductivity for this medium as a function of the frequency.

1.5 The propagation of waves in a medium
After presenting some definitions that provide some characteristics of the mediums

where electromagnetic waves may propagate, let us study some notions concerning this
propagation.

Let M be a linear, perfect, time-invariant and non-permanently polarized medium.
Then, the electromagnetism in M is governed by the Maxwell equations, given by
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∇ · D⃗(r⃗, t) = ρ(r⃗, t),

∇ · B⃗(r⃗, t) = 0,

∇× E⃗(r⃗, t) = −µ ∂
∂t
H⃗(r⃗, t),

∇× H⃗(r⃗, t) = J⃗(r⃗, t) +
∂

∂t
D⃗(r⃗, t),

where ρ is the density of the free electric charge, which represents the charges that are
not directly associated with the polarization of M and can move through the medium,
while J⃗ expresses the current density of these free charges. Charges with their origin in
the polarization are already considered in the definition of D⃗(r⃗, t) and H⃗(r⃗, t), given, by
the linearity of M , by

D⃗(r⃗, t) = ε(r⃗)E⃗(r⃗, t), B⃗(r⃗, t) = µ(r⃗)H⃗(r⃗, t).

For the majority of materials subjected to sufficiently high frequency, the magnetic
effects are suppressed, especially when compared to the effects of polarization. Based on
that, it is common to approximate µ(r⃗) = µ0 for all r⃗ ∈M , particularly under the hypoth-
esis of homogeneity, where µ0 ∈ R is called the vacuum magnetic permeability.17 Having
said that, supposing M homogeneous, we can rewrite the Maxwell equation considering
the relations

D⃗(r⃗, t) = εE⃗(r⃗, t), B⃗(r⃗, t) = µ0H⃗(r⃗, t).

Let us apply the curl on both sides of the third Maxwell equation, the Faraday law.
Using the fourth equation, i.e., the Ampère-Maxwell law, and invoking Schwarz’s theorem
to exchange the operator curl and the time derivative, we obtain

∇×∇× E⃗(r⃗, t) = −µ0
∂

∂t

(
J⃗(r⃗, t) +

∂

∂t
D⃗(r⃗, t)

)
= −µ0

∂

∂t
J⃗(r⃗, t)− εµ0

∂2

∂t2
E⃗(r⃗, t).

Consequently, we can write

∇×∇× E⃗(r⃗, t) + εµ0
∂2

∂t2
E⃗(r⃗, t) = −µ0

∂

∂t
J⃗(r⃗, t), (14)

what is called a non-homogeneous wave equation. In order to understand the reason for
this terminology, let us use the identities for the nabla operator and rewrite the equation
14 changing the double curl by a vector Laplacian, which provides us the expression

∇2E⃗(r⃗, t)− εµ0
∂2

∂t2
E⃗(r⃗, t) = ∇

(
∇ · E⃗(r⃗, t)

)
+ µ0

∂

∂t
J⃗(r⃗, t). (15)

Thus, we can observe that we obtain the already well-known wave equation, called the
homogeneous wave equation, when the right side of 15 is identically null. The terms on
that side are charge terms and are equal to zero if M has neither sources of charges nor
free electric currents.

After having pointed it out, let us study one specific possibility of a solution for 15.
17. Even though it can be interpreted as a simple scalar, it corresponds to the tensor µ0.1.
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Definition 1.11 (Harmonic plane waves). An electromagnetic wave is called a harmonic
plane wave if there are k⃗ ∈ R3, E⃗0 ∈ C3 and ω ∈ [0,+∞) such that its electric field is
given by

E⃗(r⃗, t) = E⃗0e
i(k⃗·r⃗−ωt)

and, in an isotropic medium, E⃗(r⃗, t), H⃗(r⃗, t) and k⃗ are mutually orthogonal.18

Finding a general solution for 15 is not a simple task; then, sometimes, it is simplified
by considering only harmonic plane waves, working in the harmonic regime. Within these
hypotheses, the non-homogeneous wave equation takes a very simple format, as expressed
above.

Proposition 1.2. Let M be a medium under the presented hypothesis. Consider the fields

E⃗(r⃗, t) = E⃗0e
i(k⃗·r⃗−ωt), J⃗(r⃗, t) = J⃗0e

i(k⃗·r⃗−ωt),

for k⃗ ∈ R, E⃗0, J⃗0(r⃗) ∈ C3 and ω ∈ [0,+∞). Then, E⃗(r⃗, t) is a solution for 15 in the
harmonic regime if

(k2 − ω2µ0ε)E⃗0 = (k⃗ · E⃗0)k⃗ + iωJ⃗0.

for k := ‖k⃗‖. In this case, ∂(j)

∂t(j)
, for j ∈ N, acts on the fields as a product by (−iω)j and

∇ acts as the vector ik⃗. Moreover, when E⃗(r⃗, t) is transverse and there is no free electric
current, we obtain the dispersion expression

k2 = ω2εµ0.

Proof. Consider E⃗(r⃗, t) and J⃗(r⃗, t) given according to the statement. First, as these fields
are monofequencial and its physical fields are given by taking the real part of them, it
is clear that we are working in the harmonic regime. Having said that, we just need to
compute the elements of 15. Let us start with the spatial terms:

• ∇2E⃗(r⃗, t) = ∇ ·
(
∇E⃗(r⃗, t)

)
= −k2E⃗(r⃗, t);

• ∇ · E⃗(r⃗, t) = ∇ ·
[
E⃗0e

i(k⃗·r⃗−ωt)
]
= ik⃗ · E⃗(r⃗, t);

• ∇
(
∇ · E⃗(r⃗, t)

)
= ∇

[(
ik⃗ · E⃗0

)
ei(k⃗·r⃗−ωt)

]
= −

(
k⃗ · E⃗(r⃗, t)

)
k⃗.

Observe, by these expressions, that ∇ acts on E⃗(r⃗, t) as the vector
(
ik⃗
)

, so that we can
identify

∇ ↔ ik⃗, ∇· ↔ ik⃗ ·, ∇× ↔ ik⃗ ×, ∇2 ↔ −k2.

Analogously, let us calculate the terms with time derivative:

• ∂2

∂t2 E⃗(r⃗, t) = (−iω)(−iω)E⃗(r⃗, t) = −ω2 E⃗(r⃗, t);

• ∂
∂t J⃗(r⃗, t) = −iω J⃗(r⃗, t).

18. Note that k⃗ is not a fixed vector, but it is the parallel transportation of one vector k⃗ along the wave
propagation diretion and which was, initially, at a point of position r⃗. In other words, we are saying
that E⃗(r⃗, t), H⃗(r⃗, t) and k⃗ are tangent vectors at the point identified by r⃗, for each t ≥ 0.
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Similarly to what was noticed for the operator ∇, the derivative ∂(j)

∂t(j)
acts on E⃗(r⃗, t) and

J⃗(r⃗, t) by the product, for j = 1, 2. By the periodicity of ei(k⃗·r⃗−ωt), we have that it can
be extended to all j ∈ N and we also can identify

∂(j)

∂t(j)
↔ (−iω)j , ∀ j ∈ N.

Having said that, replacing the computed terms in 15, we have that

−k2E⃗(r⃗, t) + ω2εµ0E⃗(r⃗, t) = −
(
k⃗ · E⃗(r⃗, t)

)
k⃗ − ωµ0J⃗(r⃗, t),

or, removing the temporal dependence by dividing both sides of this equation by ei(r⃗·⃗k−ωt),

(k2 − ω2µ0ε)E⃗0 = (k⃗ · E⃗0)k⃗ + iωJ⃗0. (16)

When the wave is transverse in the isotropic medium, E⃗(r⃗, t) ⊥ k⃗ and, consequently,
k⃗ · E⃗0 = 0. Along with this, for a null free electric current, the equation 16, we obtain

(k2 − ω2µ0ε)E⃗0 = 0.

by the arbitrarity of E⃗0 ∈ C3, we know that k2 − ω2µ0ε or, equivalently,

k2 = ω2µ0ε.

Another simplification to solve equation 15 is to reduce it to homogeneous equations.
For that, let us separate the analysis into the isotropic and non-isotropic cases.

Let M an isotropic medium, where a harmonic plane wave propagates. Consider an
orthonormal framework {e1, e2, e3} such that e3 is the direction of propagation. In this
case, using the proposition 1.2, the equation 15 becomes(

k2 − ω2εµ0

)
E⃗0 = 0, (17)

where ε, µ0 ∈ C are considered scalars.19 As this wave is transverse, we can define a vector
E ∈ C2 according to the identification

E⃗0 =

E1

E2

0

 7−→ E⃗ :=

(
E1

E2

)
.

This vector, which we will define more properly in the next chapter, is called the Jones
vector of E⃗(r⃗, t). Notice that any (E1, E2) ∈ C2 is a solution for 17. Such symmetry, which
allows us to select any point of C2, is called C2 symmetry. Additionally, since E⃗ is not a
function of the position and of the time, it is a spatial-time invariant that represents the
geometry of the wave. This is one of the clues that the Jones vector may have a central
role in the study of light polarization. In addition to that, we can consider the movement

19. The notation of belonging to the complex number is just to make explicity that µ0 is taken as a scalar,
despite µ0 be a real constant.
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of the electric field vector in the plane (x, y, z) for some z fixed, say z = 0. Due to the
C2 symmetry, all movements of 20 E⃗(r⃗, t) following its equation are possible, i.e., the field
will follow the trace of one arbitrary ellipse or a segment of line.

After presenting the isotropic case, let us study the anisotropic one. Due to the break
of rotation symmetry, the dependence of the electromagnetic phenomena on the directions
inside of the material expresses the difficulty of dealing with, for instance, an induced po-
larization vector no longer parallel to the electric field. That said, let M be an anisotropic
medium. In this case, ε cannot be treated simply as a scalar, as is clear by the definition
1.9. Nevertheless, ε may have a simple form, as the next result expresses.

Proposition 1.3. Let M be a medium under the present hypothesis. Due to the conser-
vation of energy, ε is a positive semidefinite Hermitian tensor.21

Proof. Under the hypothesis of the statement, if there is neither loss of energy nor sources
of energy inside of M , the volumetric density of energy is given by

u(r⃗, t) =
1

2
<
{
E⃗(r⃗, t) · D⃗(r⃗, t)

}
.

As the energy is conserved, =
{
E⃗(r⃗, t) · D⃗(r⃗, t)

}
= 0. Joining with the fact that the

medium is linear, instantaneous and without permanent polarization, we obtain

<
{
E⃗(r⃗, t) · D⃗(r⃗, t)

}
= <

{
E⃗(r⃗, t) ·

(
εE⃗(r⃗, t)

)}
= <

{
E⃗(r⃗, t)†εE⃗(r⃗, t)

}
= E⃗(r⃗, t)†εE⃗(r⃗, t) ∈ R.

Consequently,

E⃗(r⃗, t)†εE⃗(r⃗, t) = E⃗(r⃗, t)†εE⃗(r⃗, t) = E⃗(r⃗, t)†ε†E⃗(r⃗, t)

=⇒ E⃗(r⃗, t)†
(
ε− ε†

)︸ ︷︷ ︸
=0

E⃗(r⃗, t) = 0

=⇒ ε = ε†

Then, ε is Hermitian. Moreover, notice that, for all non-null E⃗(r⃗, t) applied, u(r⃗, t) ≥ 0,
since it represents the energy stored in the field. So, we have that

E⃗(r⃗, t)†εE⃗(r⃗, t) ≥ 0.

Hence, ε is positive semidefinite.
20. Sometimes, the complex and the real fields are treated as the same. When the differentiation between

them is not explicit, the context will express about which one we are discussing.
21. Some authors, as [5], consider that a medium is anisotropic if, and only if, its ε, µ have strictly positive

eigenvalues. It leads them to characterize an anisotropic medium as mediums that, by definition, have
positive definite ε, µ. This is not our case. To see that, consider ε with two zero eigenvalues and take
the framework such that ε is diagonal, with ε33 ̸= 0. Consider also a plane wave with the null third
entrance. Consequently, E⃗†εE⃗ = 0, i.e., ε is positive semidefinite.

21



A direct consequence of this proposition, joint to the spectral theorem, is the fact that
ε has three non-negative real eigenvalues and there is a framework such that ε assumes
diagonal format. When, at least, one of these eigenvalues is zero, physically, it means
that the direction given by its eigenvectors does not contain any component of the electric
displacement field. Since the density of energy is proportional to the product E⃗ · D⃗,
the material will not store energy in this direction, having the behavior of a transparent
material. Again, by the spectral theorem, we know that there is an orthonormal framework
composed of eigenvectors of ε and each one determines a direction in the medium. Based
on this idea, we can separate the materials, in this context, in terms of their eigenvalues,
and understand the physics of these materials by the use of these directions.

Definition 1.12 (Uniaxial and biaxial materials). Let M be a medium with electric per-
mittivity tensor ε. Consider ε1, ε2, ε3 ∈ [0,+∞) the eigenvalues of ε and {e1, e2, e3} the
orthonormal framework formed by the eigenvectors of ε. If

• εi = εj 6= εk, for distinct i, j, k = 1, 2, 3, i.e., if ε has only two equal eigenvalues, M
is called a uniaxial material;

• εi 6= εj 6= εk 6= εi, for distinct i, j, k = 1, 2, 3, i.e., if ε has three different eigenvalues,
M is called a biaxial material.

Moreover, the axes given by the direction of the eigenvectors of ε are called the principal
axes of M .

Having said that, let us study 14 for the anisotropic case. By Gauss’ law, we know that
the displacement field is perpendicular to the vector k⃗. However, this perpendicularity with
respect to k⃗ is not necessarily maintained for the electric field. In fact, using the linearity
of M and the hypothesis that neither D⃗(r⃗, t) nor k⃗ is identically null, we observe that

D⃗(r⃗, t) · k⃗ = 0 ⇐⇒
(
εE⃗(r⃗, t)

)
· k⃗.

Consequently, if ε rotates the vector E⃗(r⃗, t) in R3 by an angle different from multiples of
π, the perpendicularity is no longer valid. Due to this fact, sometimes it is better to write
the homogeneous 14 to D⃗(r⃗, t) instead of E⃗(r⃗, t), which produces

∇×∇×
(
εD⃗(r⃗, t)

)
− ω2µ0D⃗(r⃗, t) = 0,

or, in the coordinates with respect to the orthonormal framework {e1, e2, e3} that we are
considering,

∇×∇×


ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 ε33

−1D1(r⃗, t)
D2(r⃗, t)
D3(r⃗, t)


 − ω2µ0

D1(r⃗, t)
D2(r⃗, t)
D3(r⃗, t)

 =

0
0
0

 . (18)

By applying the condition D⃗(r⃗, t) ⊥ k⃗, we know that D3(r⃗, t) = 0, since, by hypothesis,
the wave is propagating along the direction given by e3. Usually, it reduces the difficulty
to solve 14. Furthermore, let us study an especiffic case, which is when each element of
{e1, e2, e3} is parallel to one distinct eigenvector of ε. Then, 18 assumes the simpler form
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k2
( 1

ε1
0

0 1
ε2

)(
D1(r⃗, t)
D2(r⃗, t)

)
− ω2µ0

(
D1(r⃗, t)
D2(r⃗, t)

)
=

(
0
0

)
. (19)

Again, since D⃗(r⃗, t) is not identically null, the expression above is true if, and only if,{
k2 = ε1 µ0 ω

2,

k2 = ε2 µ0 ω
2.

Consequently, we can observe that, as k > 0, there are two possible solutions to k, say
k1, k2 ∈ [0,+∞), given by

k1 = ω
√
ε1µ0, k2 = ω

√
ε2µ0.

Physically, they represent different independent modes of propagation of the wave in the
medium. As k⃗ is perpendicular to D⃗(r⃗, t) = (D1(r⃗, t), D2(r⃗, t), 0), each non-null component
of D⃗(r⃗, t) will travel with a k⃗ such that its norm is a solution for the above system.
In addition, observe that, for k1, we can write

k21 = µ0ε0
ε1
ε0

µ0

µ0
ω2 =

εr µr ω
2

c2
,

where εr := εr
ε0

and µr := µ0

µ0
= 1. Since the refractive index associated to ε1 is defined as

n1 :=
√
εrµr, we obtain

n21 =
k21c

2

ω2
,

where c = 1√
ε0µ0

is the light speed. Analogously, we obtain a similar expression connecting
n2 and ε2. Hence, notice that, unlike the isotropic case, 19 does not have the C2 symmetry
and the polarization may be decomposed into normal modes for the directions e1 and e2,
i.e., components in e1 and e2 that propagate with refractive indexes n1 and n2, respectively.
In other words, if the wave has components in both normal modes, the phase ϕi ∝ ni,
for i = 1, 2, of each component advances differently, leading to the phenomenon known as
birefringence.

Definition 1.13 (Birefrigence). Let M be an anisotropic medium under the presented
hypothesis. We say that M is birefrigent if, for at least one direction of propagation and
given ω ∈ [0,+∞), there are two different solutions k for

k2ε−1D⃗(r⃗, t)− ω2µ0D⃗(r⃗, t) = 0.

Observe that this phenomenon could be observed when we discussed the Kerr effect.
Although the medium is not linear, the presence of a second electric field broke the sym-
metry of the medium, leading to a difference in refractive indices that influenced the x
and y components of the wave electric field.
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